On the deviation of a parametric cubic spline interpolant from its data polygon

نویسنده

  • Michael S. Floater
چکیده

When fitting a parametric curve through a sequence of points, it is important in applications that the curve should not exhibit unwanted oscillations. In this paper we take the view that a good curve is one that does not deviate too far from the data polygon: the polygon formed by the data points. From this point of view, we study periodic cubic spline interpolation and derive bounds on the deviation with respect to three common choices of parameterization: uniform, chordal, and centripetal. If one wants small deviation, the centripetal spline is arguably the best choice among the three.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape Preserving Interpolation Using C2 Rational Cubic Spline

Abstract: This study proposes new C rational cubic spline interpolant of the form cubic/quadratic with three shape parameters to preserves the geometric properties of the given data sets. Sufficient conditions for the positivity and data constrained modeling of the rational interpolant are derived on one parameter while the remaining two parameters can further be utilized to change and modify t...

متن کامل

A control polygon scheme for design of planar C2 PH quintic spline curves

A scheme to specify planar C2 Pythagorean-hodograph (PH) quintic spline curves by control polygons is proposed, in which the “ordinary” C2 cubic B-spline curve serves as a reference for the shape of the PH spline. The method facilitates intuitive and efficient constructions of open and closed PH spline curves, that typically agree closely with the corresponding cubic B-spline curves. The C2 PH ...

متن کامل

Computing the range of values of real functions using B-spline form

In this paper, we present an easy and e cient method for computing the range of a function by using spline quasi-interpolation. We exploit the close relationship between the spline function and its control polygon and use tight subdivision technique in order to obtain monotonic splines which make the range of the spline easy to compute. The proposed method is useful in case of given scattered d...

متن کامل

Geometric Continuity Two-Rational Cubic Spline with Tension Parameters

Abstract— A smooth curve interpolation is very significant in computer graphics or in data visualization. In the present paper -piecewise rational cubic spline function with tension parameter is considered which produces a monotonic interplant to a given monotonic data set. The parameters in the description of the spline curve can be used to modify the shape of the curve, locally and globally. ...

متن کامل

Algebraic Rational Cubic Spline with Constrained Control

In this paper a rational cubic algebraic spline with two shape parameters is developed to create a high-order smoothness interpolation using function values and derivative values which are being interpolated. This is a kind of rational cubic interpolation with quadratic denominator. This rational spline interpolant is monotonic interpolant to given monotonic data. The more important achievement...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2008